Stage D: typical range of Year 6 attainment			
	6.1 Beginning to develop Y6 expectations	6.2 Embedding understanding of Y6 expectations	6.3 Demonstrates mastery and application of Y6 expectations
Place value, ordering and rounding - Counting reading, writing, comparing, ordering and rounding whole numbers using place value	Reads, writes, says, orders and compares numbers up to at least 1000000 and determines the value of each digit including in appropriate contexts including measurement.	Reads, writes, says, orders and compares numbers up to 10000000 and determine the value of each digit including in appropriate contexts including measurement.	Fluently reads, writes, says, orders and compares numbers up to 10000000 and determine the value of each digit including in appropriate contexts including measurement.
	Continues to round any number up to 1000000 to the nearest $10,100,1000,10000$	Rounds any whole number to a required degree of accuracy e.g. to the nearest 10, 100, 1000, 10000, 100 000	Rounds any whole number to a required degree of accuracy. Start to suggest appropriate degrees of accuracy for different contexts.
		Continues to read Roman numerals to 1000 (M)	
	Continues to, interpret negative numbers in context, counts forwards and backwards including through zero. Places positive and negative integers in order.	Uses, interprets and orders negative numbers in context, solves problems and calculates intervals across zero.	Uses, interprets and orders negative numbers in context, solves more complex problems and calculates intervals across zero.
	Solve number and practical problems in a wide range of contexts.	Solve number and practical problems in a wide range of contexts, explains methods and reasoning.	Solve number and practical problems in a wide range of contexts, explains methods and reasoning.
Properties of numbers and number sequences	Continue to use all the multiplication tables to calculate mathematical statements including with larger numbers and decimals in order to maintain fluency.	Continue to use all the multiplication tables to calculate mathematical statements including with larger numbers and decimals in order to maintain fluency.	Continue to use all the multiplication tables to calculate mathematical statements including with larger numbers and decimals in order to maintain fluency.
	Continue to identify common factors, common multiples, prime numbers, squared and cubed numbers.	Apply knowledge of common factors, common multiples, prime numbers, squared and cubed numbers to problems in a range of contexts.	
Fractions, decimals and percentages	Compare and order fractions, including fractions > 1	Compare and order a greater range of fractions, including fractions > 1	Fluently compare and order fractions, including fractions >1, explaining methods clearly.
	Continue to use common factors to simplify fractions and common multiples to express fractions in the same denomination	Use common factors to simplify a greater range of fractions and common multiples to express fractions in the same denomination.	Fluently use common factors to simplify a greater range of fractions and common multiples to express fractions in the same denomination.
	Continue to develop understanding of relationship between fractions and division E.g. Use understanding of the relationship between unit fractions and division to work backwards by multiplying a quantity that represents a unit fraction to find the whole quantity (for example if $1 / 4$ of a length is 36 cm , then the whole length is $36 \times 4=144 \mathrm{~cm}$).	Continue to develop understanding of relationship between fractions and division E.g. Associate a fraction with division and begin to calculate decimal fraction equivalents [for example, 0.375] for a simple fraction (for example, $3 / 8$)	Explains the relationship between fractions and division giving examples in a range of contexts e.g. work backwards by multiplying a quantity that represents a non-unit fraction to find the whole quantity and calculate decimal fraction equivalents [e.g., 0.375] for a simple fraction (for example, $3 / 8$) For simple fractions with recurring decimal equivalents pupils learn about rounding the decimal to three decimal places or other appropriate approximations depending on the context.

	Continues to add and subtract fractions with the same denominator and with denominators that are multiples of the same number	Starts to add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions	Adds and subtracts fractions with different denominators and mixed numbers, using the concept of equivalent fractions
	Using a variety of images to support understanding starts to multiply simple pairs of proper fractions e.g. $1 / 4$ $x 1 / 2=1 / 8$. Makes links with earlier work on fractions as operators (fractions of), as numbers, and as equal parts of objects e.g. a rectangle	Multiplies simple pairs of proper fractions, writing the answer in its simplest form (for example $1 / 4 \times 1 / 2=1 / 8$). Demonstrates understanding using different representations.	Multiplies a wider range of simple pairs of proper fractions, writing the answer in its simplest form (for example $1 / 4 \times 1 / 2=1 / 8)$. Demonstrates understanding using different representations and clear explanations. Relates to real life contexts
	Using a variety of images to support their understanding starts to divide proper fractions by whole numbers e.g. $1 / 3 \div 2=1 / 6$	Divides proper fractions by whole numbers [for example $1 / 3 \div 2=1 / 6$. Demonstrates understanding using different representations.	Divides a wider range of proper fractions by whole numbers [for example $1 / 3 \div 2=1 / 6$. Demonstrates understanding using different representation, clear explanations and real life contexts.
	Continues to recognize and use thousandths and relate them to tenths, hundredths, decimal equivalents and measures. Multiply and divide whole numbers and those involving decimals by 10,100 and 1000.	Identifies the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places	
	Continues to recognizes per cent symbol (\%), understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 and a decimal fraction	Solve problems involving the calculation of percentages [for example, of measures, and such as 50% of 360] and the use of percentages for simple comparison	Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for more complex comparisons.
	Recalls equivalences between simple fractions, decimals and percentages. Continues to understand fractions, decimals and percentages as different ways to express a proportion	Recalls and uses equivalences between simple fractions, decimals and percentages, including in different contexts. Understand fractions, decimals and percentages as different ways to express a proportion	Recalls and uses equivalences between simple fractions, decimals and percentages, including in different contexts. Applies in a greater range of contexts to solve more complex problems.
- Ratio and Proportion	Recognise proportionality in contexts where the relations between quantities are in the same ratio (for example, similar shapes and recipes)	Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples, for example 'one egg to 3 spoons of flour, ' $3 / 5$ of the class are boys'.	Solve problems involving unequal sharing and grouping using knowledge of a wider range of fractions and multiples or more than 2 elements.
	Starts to understand ratio when comparing quantities, sizes and scale drawings by solving a variety of practical problems.	Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts Uses the notation a:b to record work if appropriate	Uses ratio and proportional reasoning to solve a wider range of more complex problems
		Solve problems involving similar shapes where the scale factor is known or can be found	
- Algebra	Starts to express missing number problems algebraically and use simple formulae, expressed first in words then moving to symbols	Express missing number problems algebraically. Use simple formulae e.g. to represent familiar situations e.g. $a+b=b+a$; to find missing lengths, coordinates or angles	Use simple formulae to express generalisations in number patterns and represent a wider range of situations in maths and science
	Continue to recognise and describe linear number sequences and find the term to term rule.	Generate and describe linear number sequences	Generate and describe a wider range of more complex linear number sequences
		Starts to finds pairs of numbers that satisfy an equation with two unknowns	Finds pairs of numbers that satisfy an equation with two unknowns
	Start to enumerate possibilities of combinations of two variables e.g. what two numbers can add up to.	Enumerate possibilities of combinations of two variables.	Enumerate possibilities of combinations of two or more variables.

Stage D: typical range of Year 6 attainment			
	6.1 Beginning to develop Y6 expectations	6.2 Embedding understanding of Y6 expectations	6.3 Demonstrates mastery and application of Y6 expectations
Understanding and using all four number operations	Starts to explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$.	Uses knowledge of the order of operations to carry out calculations and solve problems including puzzles not set in a context involving the four operations	Use their knowledge of the order of operations in a more challenging range of puzzles and contexts to carry out calculations involving the four operations
	Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.	Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.	Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
	Develops skills of rounding and estimating as a means of predicting and checking the order of magnitude of answers to decimal calculations.	Develops skills of rounding and estimating as a means of predicting and checking the order of magnitude of answers to decimal calculations. Solve problems which require answers to be rounded to specified degrees of accuracy	Develops skills of rounding and estimating as a means of predicting and checking the order of magnitude of answers to decimal calculations. Solve problems which require answers to be rounded to specified degrees of accuracy.
Addition and subtraction - Mental calculation	Perform mental calculations, including with mixed operations, appropriate large numbers and decimals.	Perform mental calculations, including with mixed operations, appropriate large numbers and decimals and more complex calculations.	Perform mental calculations, including with mixed operations, appropriate large numbers and decimals and more complex calculations.
Addition and subtraction - Written calculations	Practise addition and subtraction for larger numbers using the formal written methods of columnar addition and subtraction.	Practise addition and subtraction for larger numbers with more than four digits using the formal written methods of columnar addition and subtraction.	Practise addition and subtraction for larger numbers with more than four digits using the formal written methods of columnar addition and subtraction.
Multiplication and division - Mental calculation	Continue to use all multiplication tables to calculate mathematical statements to maintain fluency. Use these to undertake mental calculations with increasingly large (appropriate) numbers and decimals, using mixed operations	Continue to use all multiplication tables to calculate mathematical statements to maintain fluency. Use these to undertake mental calculations with increasingly large (appropriate) numbers and decimals, using mixed operations and more complex calculations.	Continue to use all multiplication tables to calculate mathematical statements to maintain fluency. Use these to undertake mental calculations with increasingly large (appropriate) numbers and decimals, using mixed operations and more complex calculations.
		Use understanding of place value to multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places.	
	Starts to multiply decimals with simpler cases e.g. $0.4 \times$ $2=0.8$ in practical contexts involving measures or money.	Multiplies one-digit numbers with up to two decimal places by whole numbers up to two digits, using appropriate method of calculation.	
Multiplication and division - Written calculations	Multiply multi-digit numbers up to 4 digits by a twodigit whole number using the formal written method of long multiplication	Fluently multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication	
	Divide numbers up to 4 digits by a two-digit whole number using the formal written method of short division where appropriate, interpreting remainders	Fluently divide numbers up to 4 digits by a two-digit whole number using the formal written method of short division where appropriate, interpreting	

	according to the context	remainders according to the context	
	Begin to use long division to divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context	Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context	Fluently divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
	Start to divide decimals with simpler cases e.g. $5.6 \div 7$ $=0.8$ or division of decimal numbers by one-digit whole numbers, in practical contexts involving measures or money. Recognises division calculations as the inverse of multiplication.	Divides numbers with up to two decimal places by single digit whole numbers. Uses written division methods in cases where the answer has up to two decimal places	Divides numbers with up to two decimal places by whole numbers up to two digits. Uses written division methods in cases where the answer has up to two decimal places
- Problem solving	Solve multi-step problems involving all operations in a range of contexts, deciding which operations and methods to use and why.	Solve multi-step problems involving all operations in a range of contexts, deciding which operations and methods to use and why.	Solve multi-step problems involving all operations in a range of contexts, deciding which operations and methods to use and why.

Year 6 Measurement

Stage D: typical range of Year 6 attainment			
	6.1 Beginning to develop Y6 expectations	Embedding understanding of Y6 expectations	6.3 Demonstrates mastery and application of Y6 expectations
Measurement: - Practical measuring skills	Continue to use read and write standard metric units and their abbreviations, being fluent in their relationships. Suggest and use suitable units and equipment to measure and read scales accurately.	Continue to use read and write standard metric units and their abbreviations, being fluent in their relationships. Suggest and use suitable units and equipment to measure and read scales accurately.	Continue to use read and write standard metric units and their abbreviations, being fluent in their relationships. Suggest and use suitable units and equipment to measure and read scales accurately.
Measuring - Length - mass/weight and - capacity / volume	Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places	Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places	Know approximate conversions and use to tell if an answer is sensible.
		Convert between miles and kilometres	Connect conversion e.g. from kilometres to miles to a graphical representation as preparation for understanding linear/proportional graphs.
- Area and perimeter	Continue to measure and calculate the perimeter of composite rectilinear shapes in cm and m .	Recognise that shapes with the same areas can have different perimeters and vice versa	
	Calculate the area of squares and other rectangles including using standard units, centimetre squared (cm2) and squared metres (m2).	Recognise when it is possible to use formulae for area and volume of shapes	
	Estimate the area of irregular shapes by counting squares (half squares and fractions of squares).		
	Start to relate area of rectangles to parallelograms and triangles e.g. by dissection,	Calculate the area of parallelograms and triangles, understanding and using formulae in words.	Calculate the area of parallelograms and triangles, understanding and using formulae in symbols
		Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm) and cubic metres (m_{3}^{3}), and extend to other units [for example, mm and km].	
- Temperature		Measure and calculate for temperature problems.	
- Time	Solve problems involving converting between units of time including problems involving the duration of events.	Solve more complex problems involving converting between units of time including problems involving the duration of events.	
- Problem solving	Uses all four operations to solve problems involving calculation and conversion of units of measure) using decimal notation up to three places where appropriate.	Uses all four operations to solve problems involving calculation and conversion of units of measure) using decimal notation up to three places where appropriate.	

Year 6 Geometry

Stage D: typical range of Year 6 attainment			
	6.1 Beginning to develop Y6 expectations	6.2 Embedding understanding of Y 6 expectations	6.3 Demonstrates mastery and application of Y6 expectations
Geometry: - properties of shapes	Compare and classify geometric shapes based on their properties and sizes.	Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons	Compare and classify a wider range of geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons Explain how unknown lengths and angles can be derived from known measurements.
	Draw 2-D shapes using given dimensions and angles with increasing accuracy. Use conventional markings and labels for lines and angles.	Draw 2-D shapes using given dimensions and angles accurately. Use conventional markings and labels for lines and angles. Start to draw nets.	Draw a wider range of 2-D shapes and nets accurately using given dimensions and angles. Use conventional markings and labels for lines and angles.
	Start to illustrate and name parts of circles including radius, diameter and circumference.	Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius Begin to express some relationships algebraically e.g. $d=2 \times r$	Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius. Express some relationships algebraically e.g. $d=2 \times r$
		Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles. Begin to express some relationships algebraically e.g. $a=180-(b+c)$.	Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles. Express some relationships algebraically e.g. $a=180-(b+c)$.
	Recognise, describe and build simple 3-D shapes.	Recognise, describe and build simple 3-D shapes, including making nets	
	Solve problems, involving reasoning about shapes and their properties. Explain solutions.	Solve problems, involving reasoning about shapes and their properties. Explain solutions.	Solve problems, involving reasoning about shapes and their properties. Explain solutions
Geometry - Position and direction	Draw and label a pair of axes in all four quadrants with equal scaling, extending knowledge of one quadrant to all four quadrants, including the use of negative numbers.	Describe positions on the full coordinate grid (all four quadrants)	
	Draw and translate simple shapes on the coordinate plane in the first quadrant.	Draw and translate simple shapes on the coordinate plane, and reflect them in the axes. Draw and label rectangles (including squares), parallelograms and rhombuses, specified by coordinates in the four quadrants, predicting missing coordinates, using the properties of the shapes. Use reasoning to solve problems related to coordinates, reflections and translations.	Draw and label rectangles (including squares), parallelograms and rhombuses, specified by coordinates in the four quadrants, predicting missing coordinates, using the properties of the shapes. These might be expressed algebraically for example, translating vertex (a, b) to $(a-2, b+3) ;(a, b)$ and $(a+d, b+d)$ being opposite vertices of a square of side d

Year 6 Statistics

Stage D: typical range of Year 6 attainment			
Statistics	6.1 Beginning to develop Y6 expectations	6.2 Embedding understanding of Y6 expectations	Demonstrates mastery and application of Y6 expectations
	Present, complete, read and interpret information in table, bar charts and line graphs. Start to interpret pie charts.	Construct and interpret line graphs, interpret pie charts and use both to solve problems. Connect work on angles, fractions and percentages to the interpretation of pie charts.	interpret and construct pie charts and line graphs and use these to solve problem Link percentages of 360° to calculating angles of pie charts.
		Connect conversion from kilometres to miles in measurement to its graphical representation.	Encounter and draw graphs relating two variables, arising from their own enquiry and in other subjects
	Start to calculate and interpret the mean as an average for simple sets of discrete data.	Calculate and interpret the mean as an average for simple sets of discrete data in different contexts.	Calculate and interpret the mean as an average Know when it is appropriate to find the mean of a data set.

